Learning to Estimate Dynamical State with Probabilistic Population Codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Estimate Dynamical State with Probabilistic Population Codes

Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear wi...

متن کامل

Combining Probabilistic Population Codes

We study the problem of statistically correct inference in networks whose basic representations are population codes. Population codes are ubiquitous in the brain, and involve the simultaneous act ivi ty of many units coding for some low dimensional quantity. A classic example are place cells in the rat hippocampus: these fire when the animal is at a particular place in an environment, so the u...

متن کامل

Probabilistic Population Codes

Currently there are two main working hypotheses that purport to answer the first of these questions: what do neural populations represent? The first (standard model) claims that populations encode the value of a stimulus. Whilst the second, more recent perspective, claims they encode a probability distribution over the possible values of a stimulus. The standard model can be caricatured in the ...

متن کامل

Probabilistic Interpretation of Population Codes

We present a general encoding-decoding framework for interpreting the activity of a population of units. A standard population code interpretation method, the Poisson model, starts from a description as to how a single value of an underlying quantity can generate the activities of each unit in the population. In casting it in the encoding-decoding framework, we find that this model is too restr...

متن کامل

Probabilistic Population Codes for Bayesian Decision Making

When making a decision, one must first accumulate evidence, often over time, and then select the appropriate action. Here, we present a neural model of decision making that can perform both evidence accumulation and action selection optimally. More specifically, we show that, given a Poisson-like distribution of spike counts, biological neural networks can accumulate evidence without loss of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS Computational Biology

سال: 2015

ISSN: 1553-7358

DOI: 10.1371/journal.pcbi.1004554